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Abstract: Early detection of left ventricular systolic dysfunction (LVSD) may prompt early care and
improve outcomes for asymptomatic patients. Standard 12-lead ECG may be used to predict LVSD.
We aimed to compare the performance of Machine Learning Algorithms (MLA) and physicians in
predicting LVSD from a standard 12-lead ECG. By utilizing a dataset of 13,820 pairs of ECGs and
echocardiography, a deep residual convolutional neural network was trained for predicting LVSD
(ejection fraction (EF) < 50%) from ECG. The ECGs of the test set (n = 850) were assessed for LVSD
by the MLA and six physicians. The performance was compared using sensitivity, specificity, and
C-statistics. The interobserver agreement between the physicians for the prediction of LVSD was
moderate (κ = 0.50), with average sensitivity and specificity of 70%. The C-statistic of the MLA
was 0.85. Repeating this analysis with LVSD defined as EF < 35% resulted in an improvement in
physicians’ average sensitivity to 84% but their specificity decreased to 57%. The MLA C-statistic
was 0.88 with this threshold. We conclude that although MLA outperformed physicians in predicting
LVSD from standard ECG, prior to robust implementation of MLA in ECG machines, physicians
should be encouraged to use this approach as a simple and readily available aid for LVSD screening.

Keywords: heart failure; machine learning; artificial intelligence; electrocardiogram; early diagnosis

1. Introduction

Heart failure (HF) is a major global health problem, associated with high morbidity
and mortality. It is estimated that 6.2 million Americans >20 years of age suffer from some
form of HF [1]. Asymptomatic left-ventricular systolic dysfunction (LVSD) is reported
to be more common than symptomatic HF and is associated with poor outcomes [2–5].
Several interventions have been established as effective in terms of improving prognoses
once asymptomatic LVSD has been diagnosed [6,7]. Thus, early diagnosis of asymptomatic
LVSD is of significant clinical and prognostic value. Echocardiography, a non-invasive,
ultrasound-based exam, is the recommended key investigation for the assessment of
cardiac function [8]. Unfortunately, this exam is less accessible, especially for primary
care physicians, and requires professional interpretation skills, making it less relevant as a
screening test [9–11]. A screening strategy based on B-type natriuretic peptide, a serum
protein which is elevated in patients with overt HF, has established a role in asymptomatic
LVSD screening, although the performance of this metric is not robust [12–16]. As opposed
to the two aforementioned tests, electrocardiography (ECG) is a readily available, non-
invasive, basic cardiovascular test which is performed and interpreted over 300 million
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times annually. This makes ECG an attractive test for asymptomatic LVSD screening. The
use of machine learning algorithms (MLA), a subset of artificial intelligence, in healthcare is
constantly increasing due to their ability to predict specific outcomes from various types of
data. Such algorithms were recently reported to have high performance in predicting low
ejection-fraction (≤35%) in echocardiography from a standard 12-lead electrocardiogram
(ECG) [17,18]. Assuming ECG may be utilized for the prediction of LVSD by MLA, it is
interesting to explore if physicians can predict LVSD by analyzing a standard ECG. We
hypothesize that both MLA and physicians can predict abnormal EF from a standard
12-lead ECG.

2. Materials and Methods
2.1. Study Population

To test the hypotheses, a paired ECG and echocardiography dataset was created. After
obtaining the approval of the local institutional review board at Shamir Medical Center,
the hospital’s databases were used to identify all patients that had a standard 10-s, 12-lead
ECG recorded with an FDA-approved ECG machine (CardiMax FX-8222/FX-8322/FX8200
Fukuda Denshi Co. Ltd., Tokyo, Japan) and had undergone a standardized echocardiogra-
phy in our center. These data were anonymized. Due to this and the retrospective nature
of the dataset, patient consent was waived. The billing code for adult echocardiography
was used to exclude patients under the age of 18 years. The initial dataset was censored to
include pairs of tests with a time interval of ≤180 days. This cohort was split into three
datasets as follows: the “Test dataset” included 1000 randomly collected patients of which
500 had normal EF, the “training dataset” included 80% of the dataset and the “validation
dataset” included the remaining pairs. The test set included an equal number of normal
and abnormal EF cases (and not a random collection of cases that may not have included a
sufficient number of abnormal EF cases) to establish the true discriminative performance
of both physicians and the MLA. After data collection, to increase the clinical relevancy
of the study, we further censored all test pairs performed within more than 14 days from
each other. In the case of multiple pairs within this time frame, the pair with the shortest
time interval was considered valid for analysis. The training dataset was used for the
learning process of MLA, the validation dataset was used to tune the hyperparameters and
the test dataset was used to evaluate the performance of both the physicians and MLA in
predicting EF based on ECG. Echocardiography data included standard semi-quantitative
assessments of the left-ventricular EF. EF was labeled as either “normal” for EF ≥ 50% or
“abnormal” if EF < 50%. This cut-off was based on the European Society of Cardiology
definition for preserved left-ventricular EF [8]. Demographic and baseline clinical profiles
of the included patients were obtained from the electronic medical record, based on the 9th
International Classification of Diseases.

2.2. Physician Predictions of EF by ECG

The ECGs in the test dataset were evaluated by six physicians after data anonymization.
The six physicians included two senior cardiologists with over 20 years of practice, one
senior cardiologist with 12 years of practice, and three cardiology fellows with 2–7 years of
experience as physicians. The physicians were asked to state whether they believed that
the EF of the patient with each ECG was normal or abnormal and were not allowed to
consult with other physicians.

2.3. Deep Residual Convolutional Neural Network for EF Prediction

A deep Residual Convolutional neural network (ResNet) was utilized for the predic-
tion of EF from ECG. Inspired by He et al. [19], ResNet is a form of MLA, consisting of
multiple hidden layers comprising a series of convolutional layers. All ECG records were
resampled to 500 Hz. After resampling and padding, all ECG records were represented by
a tensor matrix of shape 12 × 5000 mV, where the first dimension represents the spatial
dimension, and the second dimension represents the temporal dimension. That is, each
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lead of a 12-lead ECG is considered a 10 s signal sampled at 500 Hz. ECG samples that
were below 10 s, were zero-padded [20], and ECG signals longer than 10 s were sliced. This
tensor matrix was the input of the ResNet. The training set was used to train the model in
classifying ECG as either normal or abnormal EF. The ResNet output is the probability of
the ECG to be normal/abnormal.

The network architecture which empirically provided the best results (validated
using 10-fold cross-validation using the training data) consisted of a convolution layer,
followed by a max-pooling layer, followed by six residual blocks (Figure S1). Each residual
block consisted of three convolution layers, and between each convolution layer, batch-
normalization [21] and Rectified Linear Unit (Relu) [22] activation were performed. A
skip connection [19] was applied between the input of the block to the output of the third
convolution layer. The output of the last residual block was fed into a global average
pooling layer, followed by a dense layer with a SoftMax [23] activation function to predict
output class probabilities. The first convolution layer had 16 filters of size 7 × 7. The
residual blocks started with 16 filters, increasing to 32 filters in the last block. The size of
the kernel in the residual blocks started at 5 × 5 and decreased to 3 × 3. In all the residual
blocks except the first one, the first convolution layer down-sampled the input temporal
dimension by a stride of 2.

The network was trained by feeding 12-lead ECG batches of size 16 from the training
set. The categorical cross-entropy [24] loss was minimized using an Adam optimizer [25]
with an initial learning rate of 0.0001. The training set ran for 100 epochs, with the final
model being the one with the best accuracy on the validation set. Several architectures and
hyperparameters were explored by utilizing an iterative process, and the hyperparameters
yielded the best results on the validation set. We tuned the hyper-parameters as follows:
batch size (0.01, 0.001, 0.0001), optimizer algorithm (RMS-Prop [26], Adam [25], Stochastic
Gradient Descent [27]), and number of residual blocks [3–7].

We also attempted the following alternative architectures: (1) Temporal convolution
network with increasing dilation rate, inspired by Oord [28]. (2) Long Short-Term Memory
blocks above convolutional layers [29]. (3) Deep neural network with temporal 1d-kernels
to learn the features within each lead, followed by spatial 1d-kernels which fused the data
from all leads. These methods did not yield statistically significant improvement compared
to the ResNet we used in this work.

2.4. Statistical Analysis

Continuous data are presented as mean and standard deviation while median and
interquartile range (IQR) are used if violating normal distribution. The Kolmogorov–
Smirnov test was used to assess the normality of distribution. Categorical data are presented
as numbers and percentages. An independent sample two-sided t-test or Mann-Whitney
test was used to compare continuous variables, and the χ2 was used to compare categorical
values. The diagnostic performance of the physicians in predicting LVSD from ECG is
described by sensitivity and specificity. Fleiss’ kappa coefficient with a 95% confidence
interval was calculated to evaluate the interobserver agreement. The LVSD prediction of
the MLA is presented by a receiver operator curve and C-statistic (area under the ROC).
p value < 0.05 was considered significant. Statistical analyses utilized SPSS software (IBM
SPSS statistics for windows, version 27.0.1.0, IBM Corp., Armonk, NY, USA, 2020).

3. Results
3.1. Baseline Characteristics

The initial dataset of paired ECG and echocardiographic exams consisted of 200,879 pairs
(Figure 1). After excluding pairs of exams performed outside of a 14-day period and
those that had more than one ECG or one echocardiographic exam within this timeframe
(i.e., only one pair per patient with the shortest time gap between tests was included), the
final dataset included 13,820 pairs with a median time interval of one day (IQR 0–3) between
the ECG and the echocardiography test. The median age and EF of the included patients
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were 69.9 years (59.7–80.2), and 55% (40–60) respectively; 61% of patients were male. Past
medical history data were available for 12,657 (91.6%) patients. Diabetes mellitus and
hypertension were present in 54.8% and 76.1% of cases, respectively. While no significant
differences were noted in the baseline characteristics between the validation and training
datasets, the test dataset, in which half of the patients had abnormal LV function, had
a higher prevalence of male gender, peripheral and coronary artery disease and lower
median EF (Table 1).
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Figure 1. Study flow diagram.

As demonstrated in Table 2, compared with patients with normal EF, patients with
LVSD were more likely to be males with a higher incidence of cardiovascular risk factors
including, among others, diabetes mellitus, hypertension, and obesity.
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Table 1. Baseline characteristics of three datasets of echocardiography and ECG pairs.

Index Training Dataset
(n = 10,402)

Validation Dataset
(n = 2568)

Test Dataset
(n = 850) p-Value

Age (years [IQR]) 69.8 [59.6–80.1] 70.0 [59.4–80.2] 71.3 [61.1–81.4] 0.07
Male (n; %) 6347; 61.0% 1569; 61.1% 560; 65.9% 0.02
Family history of CAD 2591; 27.1% 590; 25.1% 224; 29.2% 0.04
Diabetes mellitus (n; %) 5254; 54.9% 1272; 54.2% 423; 54.8% 0.80
Hypertension (n; %) 7236; 75.8% 1804; 76.9% 587; 76.6% 0.50
Hyperlipidemia (n; %) 6007; 63.9% 1509; 64.3% 511; 66.7% 0.68
Chronic kidney disease (n; %) 3426; 35.9% 806; 34.4% 310; 40.5% 0.09
Chronic dialysis 2490; 26.1% 571; 24.3% 215; 28.1% 0.08
Peripheral vascular disease 2780; 29.1% 658; 28.0% 256; 33.4% 0.02
Obesity (n; %) 2569; 37.4% 856; 36.9% 283; 36.9% 0.88
Atrial fibrillation/flutter 3653; 38.3% 839; 35.8% 314; 41.0% 0.02
Pacemaker 2607; 27.3% 592; 25.2% 233; 30.4% 0.01
Smoking history 4351; 45.6% 1052; 44.8% 367; 47.9% 0.33
COPD 2977; 31.2% 716; 30.5% 263; 34.3% 0.13
Stroke/TIA 2983; 31.3% 673; 28,7% 244; 31.9% 0.04
Ischemic heart disease 4479; 46.9% 1084; 46.2% 408; 53.3% <0.001
Coronary artery bypass surgery 2729; 28.6% 632; 26.9% 247; 32.2% 0.02
PCI 2880; 30.2% 675; 28.8% 251;32.8% 0.10
EF (%) median [IQR] 55 [40–60] 55 [40–60] 50 [40–60] <0.001
EF ≥ 50% (n; %) 6729; 64.7% 1642; 63.9% 427; 50.2% <0.001

Legend: IQR—Interquartile range; CAD—Coronary artery disease; COPD—Chronic obstructive pulmonary
disease; TIA—Transient ischemic accident; PCI—Percutaneous coronary intervention; EF—Ejection fraction.

Table 2. Baseline characteristics of patients with normal ejection fraction (EF ≥ 50%) and abnormal
ejection fraction.

Index EF ≥ 50%
(n = 8798)

EF < 50%
(n = 5022) p-Value

Age (median years [IQR]) 70.1 [58.8–80.6] 69.9 [60.9–79.7] 0.26
Male (n; %) 4797; 54.5% 3679; 73.3% <0.001
Family history of coronary artery disease (n; %) 1640; 20.9% 1765; 36.8% <0.001
Diabetes Mellitus (n; %) 3855; 49.0% 3082; 64.3% <0.001
Hypertension (n; %) 5833; 74.2% 3794; 79.2% <0.001
Chronic kidney disease (n; %) 2301; 29.3% 2241; 46.8% <0.001
Dialysis (n; %) 1558; 19.8% 1720; 35.9% <0.001
Peripheral vascular disease (n; %) 1810; 23.0% 1885; 39.3% <0.001
Hyperlipidemia (n; %) 4698; 59.7% 3329; 69.5% <0.001
Obesity (n; %) 2568; 32.9% 2131; 44.5% <0.001
Atrial fibrillation/flutter (n; %) 2591; 32.9% 2215; 46.2% <0.001
Pacemaker (n; %) 1639; 20.8% 1793; 37.4% <0.001
Chronic obstructive pulmonary disease (n; %) 2034; 25.9% 1922; 40.1% <0.001
Smoking history 2984; 37.9% 2786; 58.1% <0.001
Stroke/Transient ischemia accident (n; %) 1971; 25.1% 1929; 40.2% <0.001
Ischemic heart disease 2924; 37.2% 3047; 63.6% <0.001
Coronary artery bypass surgery (n; %) 1683; 21.4% 1925; 40.2% <0.001
Percutaneous coronary intervention (n; %) 1824; 23.2% 1982; 41.4% <0.001
Ejection fraction (median % [IQR]) 60 [55–60] 40 [30–40] <0.001

EF—Ejection fraction; IQR—Interquartile range.

3.2. LVSD Prediction

The performance of the MLA model and the physicians for predicting LVSD is pre-
sented in Figure 2 and Table 3.
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Figure 2. Receiver operating characteristic curve and physician performance for predicting left
ventricular systolic dysfunction from 12-lead ECG (Area under the curve = 0.85).

Table 3. Physicians and Machine learning algorithm for predicting abnormal ejection fraction (%)
from a standard 12-lead ECG.

Predicting EF < 50% Predicting EF ≤ 35%
Sensitivity Specificity Sensitivity Specificity

Physician 1 59.4% 67.1% 69.6% 59.5%
Physician 2 76.1% 76.1% 90.0% 60.0%
Physician 3 80.8% 53.3% 93.2% 43.4%
Physician 4 63.2% 73.9% 75.8% 62.9%
Physician 5 69.2% 69.7% 83.9% 58.5%
Physician 6 82.7% 71.1% 95.0% 53.8%
Average physician 71.9% 68.5% 84.6% 56.3%
Average senior physician 77.6% 64.7% 90.7% 51.9%
MLA performance based on Youden cut point 78.3% 78.1% 78% 79%
MLA performance based on 90% sensitivity 90% 55.7% 90% 66%

EF—Ejection fraction; MLA—Machine learning algorithms.

The C-statistic of the MLA was 0.85. Significant variability was noted in the perfor-
mance of physicians with moderate interobserver agreement (Fleiss’ kappa = 0.50; 95% CI
0.48–0.52). We further compared the interobserver agreement between the two physicians
with the best performance (#6 and #2), yielding a kappa of 0.58 (95% CI 0.53–0.63). Figure 3
displays four examples of discordance between all six physicians and the MLA model for
the prediction of LVSD.

To simplify comparisons between the physicians and the MLA model, the average
performance of the physician was calculated to have a sensitivity and specificity of 70%.
This was found to be lower than the MLA (sensitivity and specificity of 78% by den index).
When this was repeated for the three senior cardiologists, the sensitivity improved to 77.6%
but the specificity decreased to 64.7%.
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Figure 3. ECG examples of discordant diagnosis of normal/abnormal left ventricular systolic dys-
function by physicians and machine learning algorithm.

To further compare the performance of MLA and the physicians, all the cases in
the test set were re-labeled, defining EF ≤ 35% as LVSD, while the rest were coded as
normal. A comparison of the baseline characteristics between patients with EF ≤ 35% and
those with EF > 35% is presented in Table S1. The C-statistic for the MLA was 0.88 for
predicting EF ≤ 35% (Figure 4). The performance of the average physician improved to
84% sensitivity, but the specificity decreased to 57%. When the average performance of
the senior cardiologists was calculated, a sensitivity of 90.7% was recorded alongside a
decreased specificity of 51.9%. The performance of the MLA did not change significantly
(78% sensitivity and 79% specificity by utilizing the Youden index).
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4. Discussion

The main results of this study indicate that: (1) Physicians can predict LVSD from
a standard 12-lead ECG with moderate interobserver variability; (2) MLA outperformed
physicians in predictions of LVSD; and (3) While the sensitivity of physicians in terms
of predicting LVSD improved significantly when the threshold was set to EF ≤ 35%, the
performance of MLA was consistent across different LVSD thresholds.

Despite major advances in pharmacological and interventional care, heart failure is
still associated with dire outcomes and significant social and financial burdens. It is thus of
paramount importance to implement novel screening methods aimed at early detection.
Early diagnosis of patients at the asymptomatic phase can facilitate care and follow-up
which, in turn, may be associated with improved outcomes. Standard 12-lead ECG is a
non-invasive, readily available, affordable test performed on millions of people each year
which may be of value as a screening aid for depressed EF. A prior attempt to associate
ECG and HF was reported by analyzing data from the Multi-Ethnic Study of Atheroscle-
rosis (MESA) trial [30]. In that report, and other studies, specific ECG features (e.g., axis
deviation, QRS duration, ST-T segment abnormalities, and bundle-branch blocks) were
independently associated with HF diagnosis [31–33]. More recently, “advanced ECG”
(aECG) was demonstrated to have high specificity and sensitivity for LVSD diagnosis. This
technology utilizes computerized analyses of the standard 12-lead ECG that incorporate
spatial and temporal data that exceed the data provided by the standard ECG analysis soft-
ware [34,35]. Of note, a relatively small-scale study demonstrated that ECG outperformed
physicians in predicting LVSD in a cohort of 79 patients [36]. Thus, although significant
advances have been made in the field of ECG and its utilization for LVSD diagnosis, at
present, echocardiography is considered the standard test for HF screening.

In recent years, the introduction of artificial intelligence (AI) to medical research
has allowed the implementation of algorithms aimed at improving diagnostic ability
and decision making. Examples include the implementation of AI algorithms for fully
automated interpretation of both echocardiography and cardiac magnetic resonance [37,38].
Several studies have focused on the ability of AI to interpret ECG abnormalities from both
single and 12-lead ECG [20,39]. Other studies have demonstrated the superior performance
of AI compared to physicians regarding ECG interpretation [40–42].

This was also demonstrated for predicting LVSD from ECG. In a study by Attia
et al., an AI algorithm was used in a cohort of 97,892 paired ECG and echocardiograms
to discriminate EF ≤ 35% or >35% [17]. A C-statistic of 0.93 was achieved in this study,
and these results were later validated on a separate cohort of patients [43]. Similar results
were obtained from Kwon et. al, who demonstrated a C-statistic of 0.84 for the prediction
of EF ≤ 40% and 0.82 for EF ≤ 50% from a standard ECG [18]. A later report from this
group demonstrated similar performance for EF ≤ 40% prediction from both 12-lead and
single-lead ECG [44]. The performance of MLA in the present analysis for predicting
EF < 50% from a standard 12-lead ECG is in line with these reports, and it can be speculated
that the performance variability between the reports depends on the sample size and the
threshold used to label EF as abnormal, among other indices [45]. The implementation of
the AI algorithm for EF prediction was recently tested in the “ECG AI-Guided Screening for
Low Ejection Fraction” (EAGLE) randomized controlled trial [46]. This study demonstrated
that the use of AI-guided ECG-based prediction of EF in clinical practice was associated
with a high incidence of referral to echocardiography compared with standard of care.

Since at present, MLA is not routinely embedded into ECG interpretation, and most
ECGs are being analyzed and interpreted by physicians, it is of interest to explore the
question of whether physicians can predict EF from ECG in a similar manner as MLA.
Similarly to Hannun et al. [40], we calculated the average sensitivity and specificity of
physicians for predicting LVSD to be 70% for both. The MLA outperformed the average
physician with 78.3% sensitivity and 78.1% specificity by utilizing the Youden index to
determine the best performance. Interestingly, when the threshold for EF abnormality
was set to ≤35%, physician sensitivity improved to 84% with 57% specificity, but the
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performance of the MLA did not change significantly (78% sensitivity; 79% specificity).
This was even more pronounced in the performance of the senior cardiologists, in which
the sensitivity increased from 77.6% to 90.7%, practically outperforming the MLA. The
significant improvement in the sensitivity of the physicians when using a lower threshold
for defining LVSD may indicate that the ECG features used by physicians are more relevant
to rule out low ejection fraction, while their ability to identify potentially low EF is less
robust. On the other hand, although outperformed by MLA, physicians’ performance
for both retaining and excluding LVSD when a threshold of EF < 50% was used was as
balanced as that of MLA. As we demonstrated, the interobserver agreement between
physicians for EF prediction was moderate at best (Fleiss kappa = 0.50; 95% CI 0.48–0.52),
even when two physicians with the best performance were studied (Fleiss kappa = 0.58; 95%
CI 0.55–0.61). This may indicate that the labeling of EF as abnormal by physicians is based
on the different weights given to the ECG segment. For example, while one physician may
place significant weight on the existence of Q waves when predicting an EF as abnormal,
the other might prioritize the ST-T segment over Q waves.

Taken together, since echocardiography is still the recommended key investigation
exam for the diagnosis of cardiac dysfunction, and while this test is not readily available,
before the broad implementation of streamlined MLA-based LVSD prediction, physicians
should be encouraged to screen for LVSD whenever an ECG is interpreted.

Several limitations to this study should be acknowledged. First, the parameters used
by MLA for the classification of ECGs in this study are unknown. This inherent “black box”
feature of MLA prevented us from highlighting specific traditional (e.g., bundle branch
blocks, Q waves, etc.) and non-traditional, unknown parameters associated with LVSD.
Beyond the inability to gain new insights regarding unknown features associated with
LSVD, this lack of identifiable parameters further limited our ability to retrain physicians
and improve their performance. Although less likely in a large cohort, it is also possible
that some of the determinants for classification by the MLA are based on artifacts or
features which are relevant only to the machines used in this study. Limitations of this type
concerning the use of MLA have been discussed and highlighted by prior reports in this
field of research [47–49]. Similarly, although physicians demonstrated fair performance for
LVSD prediction, since only six physicians participated in the study, we cannot point out
which ECG features were the most influential for labeling. These important questions are
to be explored in a separate study.

Second, physician performance was based on six physicians, three of whom were
senior cardiologists while the others were cardiology fellows. Due to this selection bias,
perhaps different performance levels would have been demonstrated if a larger number of
participating physicians from different disciplines with various years of experience had
been included. On the other hand, it seems reasonable that cardiologists and cardiology
fellows represent the population of physicians with the most experience and exposure to
both ECG and echocardiography, and thus, it is believed that this cohort represents the
upper tier of performance by physicians. Lastly, the MLA models for predicting LVSD
from ECG were based on a large cohort of patients that had undergone both tests at a large
medical center. This exposes our results to selection bias. This is also relevant for the use
and interpretation of MLA based analyses in general, since these models are based on the
data presented to the model for learning, which may not necessarily represent the general
population. Although we believe in the robustness of the presented data, an external
validation study is needed before broadly implementing this model for screening for LVSD.

5. Conclusions

Although outperformed by MLA, physicians can predict LVSD from a standard 12-
lead ECG. This finding should promote the use of ECG as a screening aid for the early
detection of asymptomatic LVSD.
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